Home
Class 11
MATHS
" The integrai "int(sin^(2)x cos^(2)x)/(...

" The integrai "int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))dx" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral (sin^(2)xcos^(2)x)/((sin^(5)x+cos^(3)xsin^(2)x+sin^(3)xcos^(2)x+cos^(5)x)^(2))dx is equal to

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx

int(sin^(3)x-cos^(3)x)/(sin^(2)x cos^(2)x)dx

int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin^2x + sin^3x cos^2x + cos^5x)^2 \ dx

The integral int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx is equal to

int(a sin^(3)x+b cos^(3)x)/(sin^(2)x cos^(2)x)dx

int(a sin^(3)x-b cos^(3)x)/(sin^(2)x cos^(2)x)dx

int ( sin^(3)x+cos^(3)x)/(sin^(2)x cos^(2)x)dx=

Evaluate: int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin^2x + sin^3x cos^2x + cos^5x)^2 \ dx