Home
Class 12
MATHS
If y= x^(x^(2x) ) ,then (dy)/(dx) =...

If ` y= x^(x^(2x) ) ,then (dy)/(dx) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y) = 2^(x-y) , then (dy)/(dx) =?

If y = x^(2) + x^(log x) , then (dy)/(dx) is

If y = x^(2) + x^(log x) , then (dy)/(dx) is

If y=(sin x)^(x)+x^(2) find (dy)/(dx)

If y=x^(x^(x^(2)-oo)), find (dy)/(dx)

(i)If y = x^(3) + x^(2) + x +1 then dy/dx at x = 1 is 0 (ii)If y=sin^(-1)((2x)/(1+x^(2))) then dy/dx = tanx (iii) y = x^(x) dy/dx = x^(x)[1+logx] (iv) y = tan^(-1)x, dy/dx = 1/(1 + x^(2) state which pair of the statement given above are true.

If y= ( (cosx )^(x))/( 1+x-x^(2)),then (dy)/(dx) =

If x^y=2^(x-y) , then dy/dx is

If y=x^x-2^(sin x)" find " (dy)/(dx) .