Home
Class 12
MATHS
[p(n)=cos(theta)^( n)+sin^(n)theta," the...

[p_(n)=cos_(theta)^( n)+sin^(n)theta," then "p_(n)-p_(n-2)=kp_(n-4)" where "k=],[" 1) "1quad " 2) "-sin^(2)theta cos^(2)theta],[" 3) "sin^(2)thetaquad " 4) "cos^(2)theta]

Promotional Banner

Similar Questions

Explore conceptually related problems

If p_(n)=cos^(n)theta+sin^(n)theta then p_(n)-p_(n-2)=kp_(n-4) where k

If T_(n)=cos^(n)theta+sin ^(n)theta, then 2T_(6)-3T_(4)+1=

If T_(n)=cos^(n)theta+sin ^(n)theta, then 2T_(6)-3T_(4)+1=

If P_(n)=cos^(n)theta+sin^(n)theta then 2P_(6)-3P_(4)+1=

If P_(n) = cos ^(n)theta + sin^(n)theta then 2. P_(6) - 3. P_(4) + 1 =

If P_(n) = cos^(n)theta +sin^(n)theta , then P_(2) - P_(1) is equal to :

If P_(n) = cos^(n)theta +sin^(n)theta , then P_(2) - P_(1) is equal to :

If u_(n) = sin ^(n) theta + cos ^(n) theta, then 2 u_(6) -3 u_(4) is equal to.......... A) -1 B) 12 sin ^(2) theta cos ^(2) theta C) 1 D) 12 tan ^(2) theta cos ^(2) theta

If P_(n)=cos^(n)theta+sin^(n)theta and Q_(n)=cos^(n)theta-sin^(n)theta then show that p_(n-2)=-sin^(2)theta cos^(2) theta p_(n-4) hence show that p_(4)=1-2 sin^(2) theta cos^(2) theta Q_(4)=cos^(2) theta- sin^(2) theta

If sin theta+cos ec theta=2 then sin^(n)theta+cos ec^(n)theta=