Home
Class 10
MATHS
निम्न रैखिक समीकरण के युग्म को हल कीजिए ...

निम्न रैखिक समीकरण के युग्म को हल कीजिए ।
`(6)/(x+y)=(7)/(x-y)+3`
`(1)/(2(x+y))=(1)/(3(x-y))`, जहाँ `x+y ne 0` तथा `x-y ne 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

( 9)/(x) - ( 4)/( y) = 8 , ( 13)/(x) + ( 7)/(y) = 101 ( x ne 0, y ne 0 )

( 5)/(x)- ( 3) /( y ) = 1 , ( 3) /( 2 x ) + ( 2) /( 3y ) = 5 ( x ne 0 , y ne 0 )

( 3 ) /(x) - (1 ) /( y) + 9 = 0 , (2)/(x) + ( 3)/( y) = 5 ( x ne 0 , y ne 0 )

यदि x^(y)=y^(x) [जहाँ x ne y ] का हल है -

( 1 ) /( 2x ) + (1 ) /( 3y ) = 2, (1) /( 3x ) + (1) /( 2y ) = ( 13) /( 6) ( x ne 0 , y ne 0 )

Solve for x and y : (1)/(2x) - (1)/(y) = - 1, (1)/(x) + (1)/(2y)= 8 ( x ne 0 , y ne 0 )

Solve : {:((2xy)/(x+y)=(3)/(2)),((xy)/(2x-y)=-(3)/(10)):} x+y ne 0 and 2x-y ne 0

(x+ (1)/(y)) = (y+ (1)/(z))= (z + (1)/(x)) and (x ne y ne z) find xyz= ?

( 1 ) /(x) + (1 ) /( y) = 7 , ( 2)/(x) + ( 3) /( y) = 17 (x ne 0, y ne 0 ) .

Solve y^'= (y(x-2 y))/(x(x-3 y)), x ne 0, x ne 3 y^