Home
Class 12
MATHS
The determinant |a2\ a^2-(b-c)^2b c b^2b...

The determinant `|a2\ a^2-(b-c)^2b c b^2b^2-(c-a)^2c a c^2c^2-(a-b)^2a b|` is divisible by- a.`a+b+c` b. `(a+b)(b+c)(c+a)` c.`a^2+b^2+c^2` d. `(a-b)(b-c)(c-a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The determinant |[a^2, a^2-(b-c)^2,bc],[b^2,b^2-(c-a)^2,ca],[ c^2,c^2-(a-b)^2,ab]| is divisible by- a. a+b+c b. (a+b)(b+c)(c+a) c. a^2b^2c^2 d. (a-b)(b-c)(c-a)

Prove: |(a^2,a^2-(b-c)^2,b c), (b^2,b^2-(c-a)^2,c a),( c^2,c^2-(a-b)^2,a b)|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove the identities: |[a^2,a^2-(b-c)^2,b c], [b^2,b^2-(c-a)^2,c a],[ c^2,c^2-(a-b)^2,a b]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove the identities: |[a^2,a^2-(b-c)^2,b c], [b^2,b^2-(c-a)^2,c a],[ c^2,c^2-(a-b)^2,a b]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

The determinant Delta=|(a^2(a+b),a b,a c),(a b,b^2(a+k),b c),(a c,b c,c^2(1+k))| is divisible by

|(a-b-c,2b,2c),(2a,b-c-a,2c),(2a,2b,c-a-b)|=

Show that: |b^2+c^2a b a c b a c^2+a^2b c c a c b a^2+b^2|=4a^2b^2c^2

Prove that, |(2a, a-b-c,2a),(2b,2b,b-c-a),(c-a-b,2c,2c)|=(a + b+c)^3