Home
Class 12
MATHS
C,quad 10.int(2x^(2)+3)/((x^(2)-1)(x^(2)...

C,quad 10.int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=a log((x+1)/(x-1))+b tan^(-1)(x)/(2)," then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If int (2x^(2)+3)/((x^(2)-1)(x^(2)+4)) dx = a log((x-1)/(x+1)) +b tan^(-1) (x/2) +c then the values of a and b are

int ((2x^(e)+ 3)dx)/((x^(2) -1)(x^(2) + 4)) = k log ((x+1)/(x-1)) +k (tan^(-) ((x)/(2))) , then k equals :

If int(1)/((x^2+1)(x^2+4))dx=a tan^(-1). x+b tan^(-1).(x)/(2)+c , then :

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+2))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=

If int((2x^(2)+1)dx)/((x^(2)-4)(x^(2)-1))=log[((x+1)/(x-1))^(a)((x-2)/(x+2))^(b)]+c , then the values of a and b are respectively

int 2/(1-x^(4)) dx = k log ((1+x)/(1-x)) + tan^(-1)x then k =

If int(1)/((x^(2)+4)(x^(2)+9))dx=A" tan"^(-1)(x)/(2)+Btan^(-1)((x)/(3))+C , then A-B=

If int(1)/((x^(2)+4)(x^(2)+9))dx=A" tan"^(-1)(x)/(2)+Btan^(-1)((x)/(3))+C , then A-B=