Home
Class 12
MATHS
log(x-1)+log(x-2)lt log(x+2)...

`log(x-1)+log(x-2)lt log(x+2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) =log(x-1)-log(x-2) and g(x) =log((x-1)/(x-2)) are identical on

Solve for x : (i) log_(10) (x - 10) = 1 (ii) log (x^(2) - 21) = 2 (iii) log(x - 2) + log(x + 2) = log 5 (iv) log(x + 5) + log(x - 5) = 4 log 2 + 2 log 3

Statement - 1 : If x gt 1 then log_(10)x lt log_(3)x lt log_(e )x lt log_(2)x . Statement - 2 : If 0 lt x lt 1 , then log_(x)a gt log_(x)b implies a lt b .

Statement - 1 : If x gt 1 then log_(10)x lt log_(3)x lt log_(e )x lt log_(2)x . Statement - 2 : If 0 lt x lt 1 , then log_(x)a gt log_(x)b implies a lt b .

lim_(x rarr 3) (log(2x-3)-log(3x + 2))/(log(2x +1))= _______.

(log)_(x-1)x (log)_(x-2)(x-1) .....(log)_(x-12)(x-11)=2,x is equal to:

Solve for real value of x: log (x - 1) + log (x^(2) + x+ 1) = log 999 .

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

If 0