Home
Class 12
MATHS
Consider f(x)=tan^(-1)(sqrt((1+sinx)/(1-...

Consider `f(x)=tan^(-1)(sqrt((1+sinx)/(1-sinx))), x in (0,pi/2)dot` A normal to `y=f(x)` at `x=pi/6` also passes through the point: (1) (0, 0) (2) `(0,(2pi)/3)` (3) `(pi/6,0)` (4) `(pi/4,0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider f(x) = tan^-1(sqrt((1+sinx)/((1-sinx)))), x in (0,pi/2) A normal to y = f(x) at x = pi/6 also passes through the point

Consider f(x)=tan^-1(sqrt((1+sinx)/(1-sinx)),x in(0,pi/2) . A normal to y=f(x) at x=pi/6 also passes through the point :

Consider f(x)=tan^(-1)(sqrt((1+sin x)/(1-sin x))),x in(0,(pi)/(2))*A normal to y=f(x) at x=(pi)/(6) also passes through the point: (1)(0,0)(2)(0,(2 pi)/(3))(3)((pi)/(6),0)(4)((pi)/(4),0)

If f(x) = tan^(-1)(sqrt((1+sinx)/(1-sinx))), 0 lt x lt pi/2 , then f'(pi/6) is

If f(x) = tan^(-1)(sqrt((1+sinx)/(1-sinx))), 0 lt x lt pi/2 , then f'(pi/6) is

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?