Home
Class 12
MATHS
If alpha,beta are roots of x^2+px+q=0 a...

If `alpha,beta` are roots of `x^2+px+q=0 and omega` is a cube root of unity then
`I:(omegaalpha+omega^2beta)(omega^2alpha+omegabeta)=p^2-3q " II : " (omegaalpha-omega^2beta)(omega^2alpha-omegabeta)=p^2-q`
III: `(alpha+omegabeta)(alpha+omega^2beta)=p^2-3q `

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of x^(2) + px + q = 0, and omega is a cube root of unity, then value of (omega alpha + omega^(2) beta) (omega^(2) alpha + omega beta) is

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 and omega,omega^(2) are the complex roots of unity,then omega^(2)a+omega beta)(omega alpha+omega^(2)beta)=

if 1,alpha_1, alpha_2, ……alpha_(3n) be the roots of equation x^(3n+1)-1=0 and omega be an imaginary cube root of unilty then ((omega^2-alpha_1)(omega^2-alpha).(omega^2-alpha(3n)))/((omega-alpha_1)(omega-alpha_2)……(omega-alpha_(3n)))= (A) omega (B) -omega (C) 1 (D) omega^2

If w , w^(2) are the roots of x^(2)+x+1=0 and alpha, beta are the roots of x^(2)+px+q=0 then (w alpha+w^(2)beta)(w^(2)alpha+w beta) =

If w, w^(2) are the roots of x^(2)+x+1=0 and alpha, beta are the roots of x^(2)+px+q=0 then (w alpha+w^(2)beta)(w^(2)alpha+w beta) =

If alpha,beta are roots of x^(2)-px+q=0 and alpha-2,beta+2 are roots of x^(2)-px+r=0 then prove that 16q+(r+4-q)^(2)=4p^(2)

If 1,omega,omega^(2) are the 3 cube roots of unity,then for alpha,beta,gamma,delta in R

If alpha,beta are the roots of x^(2)-px+q=0 then the equation whose roots are alpha beta+alpha+beta,alpha beta-alpha-beta

If alpha, and beta are the roots of x^(2)+px+q=0 form a quadratic equation whose roots are (alpha-beta)^(2) and (alpha+beta)^(2) .

If alpha, and beta are the roots of x^(2)+px+q=0 form a quadratic equation whose roots are (alpha-beta)^(2) and (alpha+beta)^(2) .