Home
Class 10
MATHS
" If "cosec theta+cot theta=k" then prov...

" If "cosec theta+cot theta=k" then prove that "cos theta=(k^(2)-1)/(k^(2)+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos ec theta+cot theta=k then prove that cos theta=(k^(2)-1)/(k^(2)+1)

If cosec theta + cot theta = p prove that cos theta = p2-1 / p2 + 1

If cosec theta+cot theta =k" then "cos theta =………….

If cosec theta+cot theta=k then find the value of cos theta in terms of k

If k tan theta=tan k theta , then prove that (sin^(2)k theta)/(sin^(2)theta)=(k^(2))/((k^(2)-1)sin^(2)theta+1).

If sec theta+tan theta=k,cos theta=(k^(2)+1)/(2k)b(2k)/(k^(2)+1)c*(k)/(k^(2)+1)d*(k)/(k^(2)-1)

Prove that: ("cosec" theta + cot theta)/("cosec" theta - cot theta) = ("cosec" theta + cot theta )^(2) = 1 + 2 cot^(2) theta + 2 "cosec" theta cot theta .

Prove that (cosec theta-cot theta)^2=(1-cos theta)/(1+cos theta)

Prove that (Sin theta)/(1-cos theta)=cosec theta+cot theta OR Prove that (Sin theta - 2 Sin^(3) theta)/(2cos^(3)theta-cos theta)=tan theta

Prove that (cot theta + "cosec" theta -1 )/(cot theta - "cosec" theta +1)=(1+ cos theta)/(sin theta).