Home
Class 12
MATHS
differentiate cot^(-1)[sqrt(1+x^(2))+x]...

differentiate `cot^(-1)[sqrt(1+x^(2))+x]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate cot ^(-1)sqrt(x)

Differentiate cot^(-1)((sqrt(1 + x^2) - 1)/(x)) w.r.t.x.

If x in((1)/(sqrt(2)),1), differentiate tan^(-1)((sqrt(1-x^(2)))/(x)) with respect to cos^(-1)(2x sqrt(1-x^(2)))

Differentiate tan^(-1)[(sqrt(1+x^2)-1)/x] with respect to x

Differentiate tan^(-1){sqrt(1+x^(2))+x},x in R with respect to x:

Differentiate tan^(-1)((sqrt(1 - x^2))/(x)) w.r.t. cos^(-1)(2x sqrt(1 - x^2))

Differentiate tan^(-1)((sqrt(1-x^(2)))/(x)) wrt cos^(-1)(2x sqrt(1-x^(2))) if x varepsilon((1)/(sqrt(2)),1)

If x in ((1)/(sqrt(2)), 1) , differentiate tan^(-1) ((sqrt(1-x^2))/(x)) with respect to cos^(-1)(2x sqrt(1-x^2)) .

If x in (1/(sqrt(2)),\ 1) , differentiate tan^(-1)((sqrt(1-x^2))/x) with respect to cos^(-1)(2xsqrt(1-x^2)) .