Home
Class 12
MATHS
2costheta - cos5theta = 16sin^(2)theta c...

`2costheta - cos5theta = 16sin^(2)theta cos^(3)theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

2 cos theta - cos 3 theta - cos 5 theta - 16 cos^(3) theta sin^(2) theta =

costheta-cos2theta=sin3theta

2cos theta-cos3 theta-cos5 theta-16cos^(3)theta sin^(2)theta=

2cos theta-cos3 theta-cos5 theta-16cos^(3)theta sin^(2)theta=

Prove that: a) cotthetacot(60^(@)-theta)cot(60^(@)+theta)=cot3theta b) cos5theta=16cos^(5)theta-2thetacos^(3)theta+5costheta c) sin4theta=4sinthetacos^(3)theta-4costhetasin^(3)theta

Prove that: a) cotthetacot(60^(@)-theta)cot(60^(@)+theta)=cot3theta b) cos5theta=16cos^(5)theta-2thetacos^(3)theta+5costheta c) sin4theta=4sinthetacos^(3)theta-4costhetasin^(3)theta

Prove that cos5theta=16cos^(5)theta-20cos^(3)theta+5costheta .

(sin^(3)theta+cos^(3)theta)/(sintheta+costheta)+(sin^(3)theta-cos^(3)theta)/(sintheta-costheta)=

Prove that cos 8 theta cos 2 theta = cos^(2) 5theta- sin^(2) 3 theta