Home
Class 12
MATHS
If x=log(1+t^(2)),y=t-tan^(-1)t, show t...

If `x=log(1+t^(2)),y=t-tan^(-1)t`, show that `(dy)/(dx)=sqrt(e^(x)-1)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=log(1+t^(2)),y=t-tan^(-1)t , find (dy)/(dx) .

Solve the following: If x = log (1+ t^2), y= t- tan^(-1) t , then show that dy/dx = (frac{sqrt (e^x -1)}{2})

If x=log(1+t^(2)),y=2t-2tan^(-1)t, then at t = 1(d^(2)y)/(dx^(2)) equals-

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=e^(sin^(-1)t^(t)),y=tan^(-1)t, then (dy)/(dx)