Home
Class 12
MATHS
If 1^(2)+(2^(2))/(2!)+(3^(2))/(3!)+(4^(2...

If `1^(2)+(2^(2))/(2!)+(3^(2))/(3!)+(4^(2))/(4!)+....=ae,(1^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+...=be,(1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+...=ce` then the descending order of a,b,c is

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify ((3(2)/(3))^(2)-(2 (1)/(2)))/((4(3)/(4))^(2)-(3(1)/(3))^(2))+(3(2)/(3)-2(1)/(2))/(4(3)/(4)-3(1)/(3))

((3(2)/(3))^(2)-(2(1)/(2))^(2))/((4(3)/(4))^(2)-(3(1)/(3))^(2))-:(3(2)/(3)-2(1)/(2))/(4(3)/(4)-3(1)/(3))=?(37)/(97) (b) (74)/(97)( c) 1(23)/(74) (d) None of these

3log 2 +(1)/(4) -(1)/(2)((1)/(4))^(2)+(1)/(3)((1)/(4))^(3)-….. =

3log 2 +(1)/(4) -(1)/(2)((1)/(4))^(2)+(1)/(3)((1)/(4))^(3)-….. =

(7(1)/(2)-5(3)/(4))/(3(1)/(2)+?)-:((1)/(2)+1(1)/(4))/(1(1)/(5)+3(1)/(2))=0.6 a) 4(1)/(3)(b)4(1)/(2) (c) 4(2)/(3) (d) None of these