Home
Class 12
MATHS
Consider a matrix A=[a(ij)](3xx3), where...

Consider a matrix `A=[a_(ij)]_(3xx3)`, where `a_(ij)={{:(i+j","if","ij=even),(i-j","if","ij=odd):}` if `b_(ij)` is cofactor of `a_(ij)` in matrix A and `c_(ij)=sum_(r=1)^(3)a_(ir)b_(jr)`, then value of `root3(det[c_(ij)]_(3xx3))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider a matrix A=[a_(ij)[_(3xx3) where, a_(ij)={{:(i+j,ij="even"),(i-j,ij="odd"):} . If b_(ij) is the cafactor of a_(ij) in matrix A and C_(ij)=Sigma_(r=1)^(3)a_(ir)b_(jr) , then det [C_(ij)]_(3xx3) is

Consider a matrix A=[a_(ij)[_(3xx3) where, a_(ij)={{:(i+2j,ij="even"),(2i-3j,ij="odd"):} . If b_(ij) is the cafactor of a_(ij) in matrix A and C_(ij)=Sigma_(r=1)^(3)a_(ir)b_(jr) , then [C_(ij)]_(3xx3) is

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

Construct the matrix [a_(ij)]_(2xx3) where a_(ij)=|i-j| .

Construct a 3xx3 matrix A=[a_(ij)] where a_(ij)=2(i-j)

Write down the matrix A=[a_(ij)]_(2xx3), where a_ij=2i-3j

Consider a 2xx2 matrix A=[a_(ij)] where a_(ij)=abs(2i-3j) Write A