Home
Class 13
MATHS
int(sin^2x)/(cos^4x)\ dx= 1/3tan^2x+C (...

`int(sin^2x)/(cos^4x)\ dx=` `1/3tan^2x+C` (b) `1/2tan^2x+C` (c) `1/3tan^3x+C` (d) none

Promotional Banner

Similar Questions

Explore conceptually related problems

int(sin^(2)x)/(cos^(4)x)dx=(1)/(3)tan^(2)x+C(b)(1)/(2)tan^(2)x+C(c)(1)/(3)tan^(3)x+C(d) none

int(sin^(2)x)/(1+cos2x)dx=k (tan x-x)+c then k is equal to

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)(tan^kx)+c , then k is=

int(x+sinx)/(1+cosx)dx= (A) xtan(x/2)+c (B) log(1-cosx)+c (C) (tan(x/2))/2+c (D) none of these

int(1)/(1+3cos^(2)x)dx=(1)/(2)tan^(-1)((tan x)/(2))+c

int(cos2x-1)/(cos2x+1)dx=tan x-x+C(b)x+tan x+C(c)x-tan x+C(d)x-cot x+C

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)[f(x)]+c , then f(pi/3)=

int(sin x)/(3+4cos^(2)x)dx log(3+4cos^(2)x)+C(b)(1)/(2sqrt(3))tan^(-1)((cos x)/(sqrt(3)))+C(c)-(1)/(2sqrt(3))tan^(-1)((2backslash cos x)/(sqrt(3)))+C(d)(1)/(2sqrt(3))tan^(-1)((2backslash cos x)/(sqrt(3)))+C

If int(dx)/(cos^(3)x sqrt(sin2x))=a(tan^(2)x+b)sqrt(tan x)+c