Home
Class 12
MATHS
If y=x sin^(-1)x+sqrt(1-x^(2)) " then pr...

If `y=x sin^(-1)x+sqrt(1-x^(2)) " then prove that " dy/dx=sin^-1x.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x sin^(-1)x+sqrt(1-x^(2)), prove that (dy)/(dx)=sin^(-1)x

If y=x sin^(-1)x+sqrt(1-x^(2)), prove that (dy)/(dx)=sin^(-1)x

If y=x\ sin^(-1)x+sqrt(1-x^2) , prove that (dy)/(dx)=sin^(-1)x

If y=(x sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=x+(y)/(x)

If y=(x sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=x+(y)/(x)

If y=(x sin^(-1)x)/(sqrt(1-x^(2)))+log sqrt(1-x^(2)), then prove that (dy)/(dx)=(sin^(-1)x)/((1-x^(2))^((3)/(2)))

If y = sin^(-1) (2x sqrt(1-x^(2))) , then dy/dx at x = 1/2 is

If y=sin ^(-1)sqrt (1-x^(2)),then (dy)/(dx)=

If y = (sin^-1x)/(sqrt(1-x^2)) , prove that (1-x^2)(dy/dx)- xy = 1