Home
Class 12
MATHS
The maximum value of the function f(x)=s...

The maximum value of the function `f(x)=sin(x+pi/6)+cos(x+pi/6)` in the interval `(0,pi/2)` occurs at `pi/(12)` (b) `pi/6` (c) `pi/4` (d) `pi/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum valuue of the function f(x)=Sin(x+pi/6)+Cos(x+pi/6) in the interval (0,pi/2) occurs at x=

The maximum value of the function f(x)=sin(x+pi/6)+cos(x+pi/6) in the interval (0,pi/2) occurs at (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

The maximum value of the function f(x)=sin(x+pi/6)+cos(x+pi/6) in the interval (0,pi/2) occurs at (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

The maximum value of the function f(x)=sin(x+pi/6)+cos(x+pi/6) in the interval (0,pi/2) occurs at (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

The maximum value of sin(x+pi/6)+cos(x+pi/6) in the internal (0,pi/2) is attained at

The greatest value of the function f(x)=(sin2x)/(sin(x+(pi)/(4))) on the interval [0,(pi)/(2)] is

The maximum value of [sin (x+(pi)/(6))+cos (x+(pi)/(6))] in the interval [0, (pi)/(2)] is attained at x=

Maximum value of sin (x + (pi)/(6)) + cos (x + (pi)/(6)) is