Home
Class 11
MATHS
The line x=t^2 meets the ellipse x^2+(y...

The line `x=t^2` meets the ellipse `x^2+(y^2)/9=1` at real and distinct points if and only if. `|t|<2` (b) `|t|<1` `|t|>1` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The line x= t^(2) meet the ellipse x^(2) +(y^(2))/( 9) =1 in the real and distinct points if and only if

The line x=t meets the ellipse x^2+(y^2)/9=1 at real and distinct points if and only if. |t| 1 (d) none of these

The line x=t^(2) meets the ellipse x^(2)+(y^(2))/(9)=1 at real and distinct points if and only if |t| 1( d) none of these

The line y=2t^2 meets the ellipse (x^2)/(9)+(y^2)/(4)=1 in real points if

The line y=2t^2 meets the ellipse (x^2)/(9)+(y^2)/(4)=1 in real points if

The line y=2t^2 intersects the ellipse x^2/9+y^2/4=1 in real points if :

The line y=2t^(2) intersects the ellipse (x^(2))/(9)+(y^(2))/(4)=1 in real points if

The straigth line y = 2t^(2) intesects the ellipse (x^(2))/(9)+(y^(2))/(4) = 1 at a real points if |t| le k then the value of k is _

If the normals at points t_1a n dt_2 meet on the parabola, then t_1t_2=1 (b) t_2=-t_1-2/(t_1) t_1t_2=2 (d) none of these