Home
Class 9
MATHS
If sin^(2)alpha+ sin alpha=1, then the v...

If `sin^(2)alpha+ sin alpha=1`, then the value of `cos^(4) alpha+ cos^(2) alpha` is ________

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(2)alpha+ cos alpha=1 , then find the value of 4 sin^(2)alpha+4 sin^(4) alpha+2 .

If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4 , then the value of (1 + cos alpha + sinalpha)/(1 + sin alpha) is equal to

If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4 , then the value of (1 - cos alpha + sinalpha)/(1 + sin alpha) is equal to

If sin alpha/2 + cos alpha/2=1.4 , then: sin alpha cos alpha =

If sin^(16) alpha = (1)/(5) , then the value of (1)/( cos^(2) alpha) + (1)/( 1 + sin^(2) alpha) + (2)/( 1 + sin^(4) alpha) + (4)/( 1 + sin^(8) alpha) is

If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1 then the value of (cos^(4)beta)/(cos^(2)alpha)+(sin^(4)beta)/(sin^(2)alpha) is

Prove that sin^(4) alpha + cos^(4) alpha + 2 sin^(2) alpha cos^(2) alpha = 1 .

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

IF sin ^(16) alpha = 1/5 then the value of (1) /(cos ^2 alpha) +(1)/( 1 + sin ^2 alpha) +(2)/(1+ sin ^4 alpha) + ( 4 )/( 1+ sin ^8 alpha) is equal to

sin^(2) alpha * tan alpha + cos^(2) alpha * cot alpha + 2 sin alpha cos alpha =