Home
Class 12
MATHS
If A=[{:(sinalpha,-cosalpha,0),(cosalpha...

If `A=[{:(sinalpha,-cosalpha,0),(cosalpha,sinalpha,0),(0,0,1):}]` then `A^(-1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(cosalpha,-sinalpha,0),(sinalpha,cosalpha,0),(0,0,1)] then ("Adj A")^(-1) =

If A=[(sinalpha,cosalpha),(-cosalpha,sinalpha)] , the prove that A'A=I .

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

If (i) A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] then verify that A'A=I. (ii) A=[{:(sinalpha,cosalpha),(-cosalpha,sinalpha):}] then verify that A'A=I.

If A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , then (adjA)^(-1)=

If A=[(cosalpha,-sinalpha,0),(sinalpha,cosalpha,0),( 0, 0, 1)], find a d jdotA and verify that A(a d jdotA)=(a d jdotA)A=|A|I_3dot

Inverse of the matrix {:[(cosalpha,-sinalpha,0),(sinalpha,cosalpha ,0),(0,0,1)]:} is

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A'A=I.

For the matrix A = [(cos alpha, -sinalpha, 0),(sinalpha, cosalpha, 0),(0,0,1)] , verify that A (adj A) = |A| I.