Home
Class 12
MATHS
f(x) is a cubic function with f(1)=-6...

`f(x)` is a cubic function with `f(1)=-6,\ f(-1)=10 ,` and has maxima at `x=-1.` Also, `f^(prime)(x)` has minima at `x=1.` Find `f(x)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a cubic polynomial with f(1) = -10, f(-1) = 6, and has a local minima at x = 1, and f'(x) has a local minima at x = -1. Then f(3) is equal to _________.

f(x) is cubic polynomial with f(x)=18 and f(1)=-1 . Also f(x) has local maxima at x=-1 and f^(prime)(x) has local minima at x=0 , then (A) the distance between (-1,2)a n d(af(a)), where x=a is the point of local minima is 2sqrt(5) (B) f(x) is increasing for x in [1,2sqrt(5]) (C) f(x) has local minima at x=1 (D)the value of f(0)=15

f(x) is cubic polynomial with f(x)=18a n df(1)=-1 . Also f(x) has local maxima at x=-1a n df^(prime)(x) has local minima at x=0 , then (A) the distance between (-1,2)a n d(af(a)), where x=a is the point of local minima is 2sqrt(5) (B) f(x) is increasing for x in [1,2sqrt(5]) (C) f(x) has local minima at x=1 (D)the value of f(0)=15

f(x) is cubic polynomial with f(x)=18a n df(1)=-1 . Also f(x) has local maxima at x=-1a n df^(prime)(x) has local minima at x=0 , then the distance between (-1,2)a n d(af(a)), where x=a is the point of local minima is 2sqrt(5) f(x) is increasing for x in [1,2sqrt(5]) f(x) has local minima at x=1 the value of f(0)=15

f(x) is cubic polynomial with f(x)=18 and f(1)=-1. Also f(x) has local maxima at x=-1 and f'(x) has local minima at x=0, then the distance between (-1,2) and (af(a)), where x=a is the point of local minima is 2sqrt(5)f(x) has local increasing for x in[1,2sqrt(5)]f(x) has local minima at x=1 the value of f(0)=15

If f^(prime)(x)=x+b ,f(1)=5,f(2)=13 , find f(x)dot

If f(x)=|x|+|x-1|-|x-2|, then-(A) f(x) has minima at x=1

Let f(x) be a polynomial of degree 3 ,such that f(1)=-6,f(-1)=10,f(x) has a critical point at x=-1 and f'(x) has a critical point at x =1,then f(x) has a local maxima at x

Let f(x) be a cubic function such that f'(1)=f''(2)=0 . If x=1 is a point of local maxima of f(x), then the local minimum value of f(x) occurs at

Let f(x) be a cubic function such that f'(1)=f''(2)=0 . If x=1 is a point of local maxima of f(x), then the local minimum value of f(x) occurs at