Home
Class 11
PHYSICS
A solid uniform sphere rotating about it...

A solid uniform sphere rotating about its axis with kinetic energy `E_(1)` is gently placed on a rough horizontal plane at time t=0, Assume that, at time `t=t_(1)`, it starts pure rolling and at that instant total KE of the sphere is `E_(2).` After sometime, at time `t=t_(2)`. KE of the sphere is `E_(3)`. Then

Promotional Banner

Similar Questions

Explore conceptually related problems

A solid sphere of radius 2.45m is rotating with an angular speed of 10 rad//s . When this rotating sphere is placed on a rough horizontal surface then after sometime it starts pure rolling. Find the linear speed of the sphere after it starts pure rolling.

A solid sphere of radius 2.45m is rotating with an angular speed of 10 rad//s . When this rotating sphere is placed on a rough horizontal surface then after sometime it starts pure rolling. Find the linear speed of the sphere after it starts pure rolling.

If a sphere is rolling, the ratio of its rotational K.E to total energy is given by

A sphere is rolling on a horizontal surface without slipping. The ratio of the rotational K.E. to the total kinetic energy of the sphere is

A uniform disc of mass m and radius R is projected horizontally with velocity v_(0) on a rough horizontal floor so that it starts with a purely sliding motion at t= 0. After t_(0) seconds it acquires a purely rolling motion. (a) Calculate the velocity of the centre of mass of the disc at t_(0) (b) Assuming the coefficient of friction to be mu , calculate to. Also calculate the work done by the frictional force as a function of time and the total work done by it over a time t muchlonger than t_(0) .

A long horizontal plank of mass m is lying on a smooth horizontal surface. A sphere of same mass m and radius r is spinned about its own axis with angular velocity we and gently placed on the plank. The coefficient of friction between the plank and the sphere is mu . After some time the pure rolling of the sphere on the plank will start. Answer the following questions. Find the time t at which the pure roiling starts

A long horizontal plank of mass m is lying on a smooth horizontal surface. A sphere of same mass m and radius r is spinned about its own axis with angular velocity we and gently placed on the plank. The coefficient of friction between the plank and the sphere is mu . After some time the pure rolling of the sphere on the plank will start. Answer the following questions. Find the time t at which the pure roiling starts