Home
Class 12
MATHS
Let F(x)=int(sinx)^(cosx)e^((1+sin^(-1)(...

Let `F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt` on `[0,(pi)/(2)]`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If int_(sinx)^(1) t^(2)f(t)dt=1-sinx " for all " x in [0,pi//2] , then f((1)/(sqrt(3)))=

Let F(x)=int_(0)^(x)(cost)/((1+t^(2)))dt,0lex le2pi . Then -

If f(x)=int_0^sinx cos^-1t dt+int_0^cosx sin^-1t dt, 0ltxltpi/2 , then f(pi/4)= (A) 0 (B) pi/sqrt(2) (C) 1 (D) pi/(2sqrt(2))

If f(x)=int_0^sinx cos^-1t dt+int_0^cosx sin^-1t dt, 0ltxltpi/2 , then f(pi/4)= (A) 0 (B) pi/sqrt(2) (C) 1 (D) none of these

Let f(x)=int_(0)^(x)(sin^(100)t)/(sin^(100)t+cos^(100)t)dt , then f(2pi)=

If int_(sinx)^(1)t^(2)f(t)dt=1-sinx, where x in(0,(pi)/(2)) , then find the value of f((1)/(sqrt(3))) .

If int_(sinx)^(1)t^(2)f(t)dt=1-sinx, xepsilon(0,(pi)/2) then find the value of f(1/(sqrt(3)))

If int_(sinx)^(1)t^(2)f(t)dt=1-sinx, xepsilon(0,(pi)/2) then find the value of f(1/(sqrt(3)))