Home
Class 12
MATHS
Let f(x)=(x^(2)+1)/([x]),1 lt x le 3.9.[...

Let `f(x)=(x^(2)+1)/([x]),1 lt x le 3.9.[.]` denotes the greatest integer function. Then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(x^(2)+2)/([x]),1 le x le3 , where [.] is the greatest integer function. Then the least value of f(x) is

Let f(x)=(x^(2)+2)/([x]),1 le x le3 , where [.] is the greatest integer function. Then the least value of f(x) is

Let f(x)=(x^(2)+2)/([x]),1 le x le3 , where [.] is the greatest integer function. Then the least value of f(x) is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f(x)=(x^(2)+1)/([x]) , ([.] denotes the greatest integer function), 1 le x lt 4 , then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the