Home
Class 11
MATHS
Given that cos ((alpha -beta)/(2)) = 2 c...

Given that `cos ((alpha -beta)/(2)) = 2 cos ((alpha+ beta)/(2)),` then ` tan ""(alpha)/(2) tan ""(beta)/(2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(-1)[(cos alpha +cos beta)/(1+cos alpha cos beta)]=2tan^(-1)("tan"(alpha)/(2)"tan"(beta)/(2))

If sin(alpha + beta) = 1 , sin(alpha - beta) = 1/2 , then : tan(alpha + 2beta)tan(2alpha + beta) is equal to :

If sin (alpha+beta)=1, sin (alpha-beta)=1/2 , then tan (alpha+ 2beta). tan (2 alpha+beta) is equal to :

If cos alpha=(2cos beta-1)/(2-cos beta),0

Show that cos^(-1)((cos alpha+cos beta)/(1+cos alpha cos beta))=2tan^(-1)(tan((alpha)/(2))tan((beta)/(2)))

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/(2))=

If cos theta = ( cos alpha - cos beta )/(1- cos alpha cos beta ) " then " tan^(2)""((theta )/(2)) tan^(2)""((beta)/(2))=