Home
Class 12
MATHS
Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(...

Let `f(x) = (sin (pi [ x + pi]))/(1+[x]^(2))` where [] denotes the greatest integer function then f(x) is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = (sin {pi[x-pi]})/(1+[x^(2)]) , where [.] stands for the greatest integer function. Then, f(x) is continuous or not?

If f(x)=(sin ([x]pi))/(x^(2)+x+1) , where [.] denotes the greast integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :