Home
Class 12
MATHS
The expression (int(0)^(n)[x]dx)/(int(0)...

The expression `(int_(0)^(n)[x]dx)/(int_(0)^(n){x}dx)`a where [x] and [x] are integrala and fractional parts of x and ` n in N` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate (int_(0)^(n)[x]dx)/(int_(0)^(n){x}dx) (where [x] and {x} are integral and fractional parts of x respectively and n epsilon N ).

Evaluate (int_(0)^(n)[x]dx)/(int_(0)^(n){x}dx) (where [x] and {x} are integral and fractional parts of x respectively and n epsilon N ).

Evaluate (int_(0)^(n)[x]dx)/(int_(0)^(n){x}dx) (where [x] and {x} are integral and fractional parts of x respectively and n epsilon N ).

Evaluate : (i) int_(-1)^(2){2x}dx (where function {*} denotes fractional part function) (ii) int_(0)^(10x)(|sinx|+|cosx|) dx (iii) (int_(0)^(n)[x]dx)/(int_(0)^(n)[x]dx) where [x] and {x} are integral and fractional parts of the x and n in N (iv) int_(0)^(210)(|sinx|-[|(sinx)/(2)|])dx (where [] denotes the greatest integer function and n in 1 )

Evaluate: (int0n[x]dx)/(int0n{x}dx)(w h e r e[x]a n d{x} are integral and fractional parts of xa n dn in N)dot

Evaluate: (int0n[x]dx)/(int0n{x}dx)(w h e r e[x]a n d{x} are integral and fractional parts of xa n dn in N)dot

LetI_(1)=int_(0)^(n)[x]dx and I_(2)=int_(0)^(n){x}dx where [x] and {x} are integral and fractionalparts of x and n in N-{1}. Then (I_(1))/(I_(2)) is equal to