Home
Class 12
MATHS
Total number of solutions of 16^(sin^(2)...

Total number of solutions of `16^(sin^(2)x)+16^(cos^(2)x)=10" in "[0,2pi]` are

Promotional Banner

Similar Questions

Explore conceptually related problems

Total number of solution of 16^(cos^(2)x)+16^(sin^(2)x)=10 in x in[0,3 pi] is equal to (A)4(B)8(C)12(D)16

No of solutions of 16^(sin^(2)x)+16^(cos^(2)x)=10,0<=x<=2 pi is

No. of solutions of 16^(sin^(2)x)+16^(cos^(2)x)=10,0lexle2pi is

The number of solutions to 16^(sin^(2)x)+16^(cos^(2)x)=10,0lexlt2pi , is

The number of solutions of the equation 16^(sin^(2)x)+16^(cos^(2)x)=10,x in[0,3pi] is …………..

Solve: 16^(sin^(2)x) +16^(cos^(2)x)=10 ,0lt=x<2pi

Solve: 16^(sin^(2)x) +16^(cos^(2)x)=10 ,0lt=x<2pi

The number of solutions of (81)^(sin ^2 x) + (81)^( cos^2x )=30 for x in [0,2pi] is equal to…………………

No. of solutions of 16^(sin^2x)+16^(cos^2x)=10, 0 le x le 2 pi is