Home
Class 12
MATHS
समतल का कार्तीय समीकरण गया कीजिए| vec...

समतल का कार्तीय समीकरण गया कीजिए|
` vecr . (hati +hatj -hatk )=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The line of intersection of the planes vecr . (3 hati - hatj + hatk) =1 and vecr. (hati+ 4 hatj -2 hatk)=2 is:

Find the angle between the line vecr = (hati +2hatj -hatk ) +lambda (hati - hatj +hatk) and vecr cdot (2hati - hatj +hatk) = 4.

The angle between the line vecr=( hati+2 hatj- hatk)+ lambda( hati- hatj+ hatk) and the plane vecr. (2 hati- hatj+ hatk)=4 is __

The shortest distance between the lines vecr = (2hati - hatj) + lambda(2hati + hatj - 3hatk) vecr = (hati - hatj + 2hatk) + lambda(2hati + hatj - 5hatk)

Find the shortest distance between the lines vecr = (hati + 2hatj+hatk) + lambda(hati-hatj+hatk) and vecr = 2hati - hatj-hatk + mu(2hati+hatj+2hatk)

The shortest distance between the lines vecr = (-hati - hatj) + lambda(2hati - hatk) and vecr = (2hati - hatj) + mu(hati + hatj -hatk) is

For any vector vecr , ( vecr.hati) hati + ( vecr.hatj) hatj + ( vecr.hatk) hatk =

Find the shortest distance between the lines vecr = (2hati-hatj-hatk)+lambda(2hati-5hatj+2hatk) and vecr= (hati+2hatj+hatk)+mu(hati-hatj+hatk)