Home
Class 12
MATHS
If (loga)/(y+z)=(log b)/(z+x)=(log c)/(x...

If `(loga)/(y+z)=(log b)/(z+x)=(log c)/(x+y)` show that `(b/c )^(x)(c /a)^(y)(a/b)^z=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y), thena ^(x)b^(y)c^(z) is

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) then value of abc=

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If (a)/(y+z-x)=(b)/(z+x-y)=©/(x+y-z) then show that (x)/(b+c)=(y)/(c+a)=(z)/(a+b)

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b+c).y^(c+a).z^(a+b) = 1

log a/(y-z)=log b/(z-x)=logc/(x-y), then a^xb^yc^z is equal to

If ("log"_(e)x)/(b - c) = ("log"_(e) y)/(c - a) = ("log"_(e) z)/(a - b) , show that x^(a)y^(b)z^(c ) = 1

If ("log"_(e)x)/(b - c) = ("log"_(e) y)/(c - a) = ("log"_(e) z)/(a - b) , show that xyz = 1