Home
Class 12
MATHS
If cosx=ycos(a+x), prove that, (d^2y)/...

If cosx=ycos(a+x), prove that,
`(d^2y)/(dx^2)=2sinasec^2`(a+x)tan(a+x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos x=y cos(a+x), Prove that (d^(2)y)/(dx^(2))=2sin a sec^(2)(a+x)tan(a+x)

If y=x^(3)+tan x, show that (d^(2)y)/(dx^(2))=6x+2sec^(2)tan x

If y=e^x(sin x+cosx) prove that (d^2y)/(dx^2)-2 (dy)/(dx)+2y=0 .

If x=tan(1/a log y) , prove that (1+x^2) (d^2y)/(dx^2)+(2x-a) (dy)/(dx)=0

If y=e^x(sinx+cosx) prove that (d^2y)/(dx^2)-2(dy)/(dx)+2y=0 .

If y=e^x(sinx+cosx) , then prove that, (d^2y)/(dx^2)-2dy/dx+2y=0

If y=e^(-x)cosx, show that (d^(2)y)/(dx^(2))=2e^(-x)sinx.

If y=e^(-x)cosx, show that (d^(2)y)/(dx^(2))=2e^(-x)sinx.

y=tan x+sec x. Prove that (d^2y)/(dx^2)=cosx/((1+sinx)^2 .

If y=(tan x+secx) , prove that (d^(2)y)/(dx^(2))=(cosx)/((1-sinx)^(2))