Home
Class 12
MATHS
If bar(a), bar(b), bar(c) are non-coplan...

If `bar(a), bar(b), bar(c)` are non-coplanar vectors and x, y, z are scalars such that `bar(a)=x(bar(b)timesbar(c))+y(bar(c)timesbar(a))+z(bar(a)timesbar(b))` then x =

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a), bar(b)&bar(c) are non-coplanar vectors and if bar(d) is such that bar(d)=1/x(bar(a)+bar(b)+bar(c)) and bar(d)=1/y(bar(b)+bar(c)+bar(d)) where x and y are non-zero real numbers, then 1/(xy)(bar(a)+bar(b)+bar(c)+bar(d))=

If [bar(a) bar(b) bar(c)]=2 then [2(bar(b)timesbar(c))(bar(-c)timesbar(a))(bar(b)timesbar(a))] is equal to

If [bar(a) bar(b) bar(c)]=2 ,then [2(bar(b)timesbar(c))(-bar(c)timesbar(a))(bar(b)timesbar(a))] is equal to

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

Let bar(a),bar(b),bar(c) be three non-zero vectors such that bar(a)+bar(b)+bar(c)=0 .Then lambda(bar(a)timesbar(b))+bar(c)timesbar(b)+bar(a)timesbar(c)=0 where lambda is

If bar(a),bar(b),bar(c) are non-coplanar unit vectors such that bar(a)times(bar(b)timesbar(c))=(sqrt(3))/(2)(bar(b)+bar(c)) then the angle between bar(a) and bar(b) is ( bar(b) and bar(c) are non collinear)

If bar(a),bar(b) and bar(c) are non-coplanar unit vectors such that bar(a)times(bar(b)timesbar(c))=(1)/(sqrt(2))(bar(b)+bar(c)) ],then which of the following statements are correct A. (bar(a),bar(c))=(3 pi)/(4) B. (bar(a),bar(b))=(3 pi)/(4) C. (bar(a),bar(b)+bar(c))=(pi)/(2) D.(bar(b),bar(c))=0

If bar(a),bar(b),bar(c) are non-coplanar vectors such that then bar(b)xxbar(c)=bar(a),bar(c)xxbar(a)=bar(b) and bar(a)xxbar(b)=bar(c), then |bar(a)+bar(b)+bar(c)|=

If bar(a), bar(b), bar(c) are non coplanar vectors and lambda is a real number, then the vectors bar(a)+2bar(b)+3bar(c), lambdabar(b)+4bar(c) and (2lambda-1)bar(c) are non-coplanar for

If bar(a),bar(b),bar(c) are non coplanar vectors and lambda is a real number then [lambda(bar(a)+bar(b))lambda^(2)bar(b)lambdabar(c)]=[bar(a)bar(b)+bar(c)bar(b)] for