Home
Class 12
MATHS
dy/dx নির্ণয় করো:x=a(cost+logtan"t/2), y...

`dy/dx` নির্ণয় করো:`x=a(cost+logtan"t/2), y=asint`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x and y are connected parametrically by the equations given, without eliminating the parameter, Find (dy)/(dx) . x=a(cost+logtan((t)/(2))), y=asint

Find (dy)/(dx) , if x=a(cost+logtant/2) , y=asint

If x and y are connected parametrically by the equations without eliminating the parameter, Find dy/dx x = a (cost + log tan (t/2)), y = a sint

Find dy/dx if x=a(cost+logtan(t//2)) and y=a sin t

If x=a(cost+logtant//2),y=asint, then (dy)/(dx)=

Find (dy)/(dx) : x=a{cost+1/2logt a n^2t/2} and y=asint .

Find (dy)/(dx) at t=(pi)/(4),(pi)/(3) , when x=a(cost+log"tan"(t)/(2)),y=asint .

x = a(costheta + logtan(theta/2), y = asintheta, find dy/dx.

Find dy/dx , if x and y are connected parametrically by the equations (without eliminating the parameter). x = a(cost + log tan (t/2)), y = a sin t .