Home
Class 12
MATHS
if y=2^(ax) and (dy)/(dx)=log256 at x=1 ...

if `y=2^(ax)` and `(dy)/(dx)=log256` at `x=1` then the value of `a` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = 2 ^(ax ) and (dy)/(dx) =log 256 at x =1, then a =

If y=a^(a^(x)) and (dy)/(dx)=y*a^(x)(log a)^(n) then the value of n is

if y=log x^(x) prove that (dy)/(dx)=1+log x

If y = log x^(x) , then the value of (dy)/(dx) is

If y = log_(10) x , then the value of (dy)/(dx) is

If y = log_(10) x , then the value of (dy)/(dx) is

If y = e^(ax) Show that x(dy)/(dx) = y log y .

If x^(y) = log x , the value of dy/dx at x = e is

y=log(x/(1+bx)) then (dy)/(dx)