Home
Class 12
MATHS
Find (dy)/(dx) when : x=a(cos t+"log ...

Find `(dy)/(dx)` when :
`x=a(cos t+"log tan"(t)/(2)), y=a sin t`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx) . x= a(cos t+ log tan (t)/(2)), y= a sin t .

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx) . x= a(cos t+ log tan (t)//(2))y= a sin t .

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx) . x= a(cos t+ log tan (t/2)), y= a sin t .

If x and y are connected parametrically by the equations, without eliminating the parameter, Find (dy)/(dx) . x= a(cos t+ log tan (t)/(2))y= a sin t .

If x and y are connected parametrically by the equations without eliminating the parameter, find (dy)/(dx) x=a (cos t + log "tan" (t)/(2)),y= a sin t

Find (dy)/( dx) , if x=a [ cos t + log ( tan ""t//2)]& y= a sin t

Find the dy/dx when x = a[cos t + log tan (t//2)], y = a sin t

If x and y are connected parametrically by the equations given,without eliminating the parameter,Find (dy)/(dx)x=a(cos t+log tan(t)/(2))y=a sin t

Find (dy)/(dx):x=a{cos t+(1)/(2)log tan^(2)(t)/(2)} and y=a sin t

Find dy/dx if: x= a(cos t + log tan (t/2)), y= a sin t