Home
Class 12
MATHS
intx/(sqrt(1-x))dx=int(sin^2theta)/(sqrt...

`intx/(sqrt(1-x))dx=int(sin^2theta)/(sqrt(1-sin^2theta))*2sinthetacos theta d theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

cos theta sqrt(1-sin^(2)theta)=

int(sqrt(cos2 theta))/(sin theta)d theta=

int(tan(2 theta))/(sqrt(sin^(6)theta+cos^(6)theta))d theta

sin4 theta can be written as (a) 4sin theta(1-2sin^(2)theta)sqrt(1-sin^(2)theta)(b)2sin theta cos theta sin^(2)theta(c)4sin theta-6sin^(3)theta(d) None of the above

Solve int((sin theta+sqrt(cos^(2)theta+2sin^(2)theta))^(n))/(sqrt(1+sin^(2)theta))cos theta d theta , where n ne -1 .

int((sin theta+cos theta))/(sqrt(sin 2theta))d theta is equal to

int(sin theta+cos theta)/(sqrt(1+sin2 theta))d theta

sqrt((1+sin theta)/(1-sin theta))+sqrt((1-sin theta)/(1+sin theta))=2sec theta

int((sintheta+costheta))/sqrt(sin2theta)"d"theta=