Home
Class 12
MATHS
If tan(picostheta)=cot(pisintheta), the...

If `tan(picostheta)=cot(pisintheta),` then prove that `cos(theta-(pi)/(4))=pm(1)/(2sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

i) If A+B=pi/4 prove that: (cotA-1)(cotB-1)=2 ii) If tan(picostheta)=cot(pisintheta) , then prove that: cos(theta-pi/4)=1/(2sqrt(2))

If tan (pi cos theta)= cot (pi sin theta) , show that cos (theta-(pi)/(4))=+- (1)/(2sqrt(2))

(i) If sin(pi/2costheta) = cos(pi/2 sin theta) , show that, +- cos(theta + pi/4) =(4n+1)/sqrt(2) where n= any integer. (ii) If tan(pi cos theta) = cot(pi sin theta) , prove that, cos(theta - pi/4) = (2n+1)/(2sqrt(2)), n=0, -1,1,-2,2 ,............

If tan(picostheta)=cot(pisintheta) , then cos(theta-(pi)/(4))=pm(1)/(2sqrt(2)) .

If tan(picostheta)=cot(pisintheta) , then cos(theta-(pi)/(4))=pm(1)/(2sqrt(2)) .

If tan (pi cos theta)= cot(pi sin theta) , prove that cos (theta-pi/4)= +- 1/(2 sqrt2) .

If tan(picostheta)=cot(pisintheta) Prove that sin(theta+pi/4)=1/(2sqrt2)

If tan(picostheta)=cot(pisintheta) , then cos(theta-(pi)/(4))=(1)/(2sqrt(2)) .