Home
Class 10
MATHS
The value of (cos^(4)x+cos^(2)xsin^(2)x...

The value of `(cos^(4)x+cos^(2)xsin^(2)x+sin^(2)x)/(cos^(2)x+sin^(2)xcos^(2)x+sin^(4)x)` is __________.

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (cos^(4)x+cos^(2)x sin^(2) x + sin^(2)x)/(cos^(2)x+ sin^(2) x cos^(2) x + sin^(4)x) is ____________

sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x

int (3 cos^(2)x+4 sin^(2)x)/(cos^(2)xsin^(2)x)dx=

If sin^(2)4x+cos^(2)x=2sin4x cos^(2)x, then

The value of int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx , is

The value of int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx , is

int(sin^(4)2x+cos^(4)2x)/(sin^(2)2xcos^(2)2x)dx=

f(x)=([1+sin^(2)x,cos^(2)x,4sin2xsin^(2)x,1+cos^(2)x,4sin2xsin^(2)x,cos^(2)x,1+4sin2x])

If sin^(4)2x+cos^(4)2x=sin2x*cos2x then x=