Home
Class 12
MATHS
If lx+my=1 touches the circle x^(2)+y^(2...

If lx+my=1 touches the circle `x^(2)+y^(2)=a^(2)`, prove that the point (l,m) lies on the circle `x^(2)+y^(2)=a^(-2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line px+qy=1 touches the circle x^(2)+y^(2)=r^(2), prove that the point (p,q) lies on the circle x^(2)+y^(2)=r^(-2)

If 1x+my-1=0 touches the circle x^(2)+y^(2)=a^(2) then the point (1,m) lies on the circle

If the line lx+my-1=0 touches the circle x^(2)+y^(2)=a^(2), then prove that (l,m) lies on a circle.

If the line l x+m y-1=0 touches the circle x^2+y^2=a^2 , then prove that (l , m) lies on a circle.

If the line l x+m y-1=0 touches the circle x^2+y^2=a^2 , then prove that (l , m) lies on a circle.

The point (1,2) lies inside the circle x^(2)+y^(2)-2x+6y+1=0 .

If the line lx + my = 1 is a tangent to the circle x^(2) + y^(2) = a^(2) , then the point (l,m) lies on a circle.

If x/alpha+y/beta=1 touches the circle x^2 +y^2=a^2 , then point (1/alpha,1/beta) lies on a/an