Home
Class 12
MATHS
Let a, b, c in R be all non-zero and sa...

Let a, b, c `in ` R be all non-zero and satisfy `a^(3)+b^(3)+c^(3)=2`. If the matrix
`A=((a,b,c),(b,c,a),(c,a,b))`
satisfies `A^(T)A=I`, then a value of abc can be :

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=I, then find the value of a^(3)+b^(3)+c^(3).

If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=I, then find the value of a^(3)+b^(3)+c^(3).

If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=l, then find the value of a^(3)+b^(3)+c^(3).

If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=l, then find the value of a^(3)+b^(3)+c^(3).

Find the values of a,b and c if the matrix A={:[(0,2b,c),(a,b,-c),(a,-b,c)] satisfies A'A = I.

Let a,b,c in R be such that a+b+c gt 0 and abc = 2 . Let A = [(a,b,c),(b,c,a),(c,a,b)] If A^(2)=I then value of a^(3)+b^(3)+c^(3) is

If a!=6,b,c satisfy |(a,2b,2c),(3,b,c),(4,a,b)|=0 then abc

If a ne b, b,c satisfy |(a,2b,2c),(3,b,c),(4,a,b)|=0 , then abc =