Home
Class 11
MATHS
If alpha,beta are the roots of the equat...

If `alpha,beta` are the roots of the equation `x^2-p(x+1)-c=0` then `(alpha+1)(beta+1)=`
a) `c` b) `c-1` c) `1-c` d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta ar the roots of the equation x^(2)-p(x+1)-c=0 then (alpha+1)(beta+1)=c b.c-1 c.1-cd .none of these

If alpha and beta are the roots of the equations x^2-p(x+1)-c=0 , then (alpha+1)(beta+1)_ is equal to:

If alpha,beta are the roots of the equation (ax^(2)+bx+c=0,then(1)/(a alpha+b)+(1)/(a beta+b)=c/ab (b) a/bc(c)b/ac(d) none of these)

If alpha , beta are the roots of x^2-p(x+1)+c=0 then (1+alpha )( 1+ beta )=

If alpha , beta are the roots of x^2-p(x+1)+c=0 then (1+alpha )( 1+ beta )=

If alpha,beta are roots of the equation x^(2)-a(xx+1)-c=0, then write the value of (1+alpha)(1+beta)

If alpha,beta are the roots of x^(2)-k(x+1)-c=0 then (1+alpha)(1+beta)=

If alpha and beta are the roots of the equation x^(2)-x+1=0, then alpha^(2009)+beta^(2009)=-1 (b) 1( c) 2(d)-2

if alpha and beta are the roots of the equation x^(2)+x+1=0 then alpha^(28)+beta^(28)=(A)1(B)-1(C)0(D)2

If alpha,\ beta are the zeros of polynomial f(x)=x^2-p(x+1)-c , then (alpha+1)(beta+1)= (a) c-1 (b) 1-c (c) c (d) 1+c