Home
Class 12
MATHS
[[1,-tan(alpha/2)],[tan(alpha/2),1]][[1,...

`[[1,-tan(alpha/2)],[tan(alpha/2),1]][[1,-tan(alpha/2)],[tan(alpha/2),1]]` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

[[1,-tan alpha],[tan alpha,1]][[1,tan alpha],[-tan alpha,1]]=[[a,-b],[-b,a]] then sec "^(2)alpha

1+tan alpha*tan((alpha)/(2))

If [[1,-tan alpha],[tan alpha,1]][[1,tan alpha],[-tan alpha,1]]=[[a,-b],[-b,a]] then sec^(2)alpha=

(1-2sin^(2)alpha)/(1+sin2 alpha)=(1-tan alpha)/(1+tan alpha)

(1-2sin^(2)alpha)/(1+sin2 alpha)=(1-tan alpha)/(1+tan alpha)

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b)tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c)tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these

If alpha+beta+gamma=2pi, then (A) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (B) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (C) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (D) none of these

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these