Home
Class 11
MATHS
Evaluate the left-and right-hand limits ...

Evaluate the left-and right-hand limits of the function defined by `f(x)={(1+x^2, 0lex<1), (2-x ,x gt1):}` at `x=1` Also, show that `lim_(xrarr1)f(x)` does not exist

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the left- and right-hand limits of the function defined f(x)={{:(1+x^(2)",if "0lexlt1),(2-x", if" xgt1):}"at "x=1. "Also, show that lim_(xto1) f(x) does not exist.

Evaluate the left hand and right hand limits of the function defined by f(x)={(1+x^(2)", if "0lexle1),(2-x^(2)", if "xgt1):}" at "x=1 also, show that lim f(x) does not exist.

Evaluate the left-and right-hand limits of the function f(x)={(|x-4|)/(x-4),x!=4, 0,x=4 ,at x=4

Evaluate the left-and right-hand limits of the function f(x)={(|x-4|)/(x-4),x=4, 0,x=4

Evaluate the left-and right-hand limits of the function f(x)={(|x-4|)/(x-4),x!=4 0,x=4a tx=4

Evaluate the left-and right-hand limits of the function f(x)={(|x-4|)/(x-4),x!=4 0,x=4a tx=4

The right hand limit of the funtion f(x) = 4

The left hand limit of the function f(x)=4

Evaluate the left-hand and right-hand limits of the following function at x = 1 : f(x)={{:(5x-4",", "if "0 lt x le 1), (4x^(2)-3x",", "if "1 lt x lt 2.):} Does lim_(x to 1)f(x) exist ?

Evaluate the left-hand and right-hand limits of the a following function at x =1 : f(x)={{:(5x-4",", "if "0 lt x le 1), (4x^(2)-3x",", "if "1 lt x lt 2.):} Does lim_(x to 1)f(x) exist ?