Home
Class 12
MATHS
The length of the latus rectum of the hy...

The length of the latus rectum of the hyperbola ` 9x^(2) -16y^(2) +72x -32y- 16 =0 ` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The latus rectum of the hyperbola 9x ^(2) -16 y^(2) + 72x - 32y-16=0 is

The latus rectum of the hyperbola 9x ^(2) -16 y^(2) + 72x - 32y-16=0 is

The length of the latus rectum of the hyperbola 25x^(2)-16y^(2)=400 is

The length of the latus rectum of the hyperbola 25x^(2)-16y^(2)=400 is

Find the centre, foci, eccentricity equation of the directrices, length of the latus rectum of the hyperbola. 9x^(2)-16y^(2)+72x-32y-16=0

The latus rectum of a hyperbola 9x^(2) - 16y^(2) + 72x-32y-16 = 0 is :

The latus rectum of the hyperbola 16 x^2-9y^2=144 is

the centre of the hyperbola 9x^(2 )- 16y^(2)+ 72 x - 32y -16=0 is