Home
Class 12
MATHS
The minimum value of a tan^2 x+b cot^2x ...

The minimum value of a `tan^2 x+b cot^2x` equals the maximum value of a `sin^ 2 theta + b cos^2 theta ` where `a gt b gt 0`
when

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of a tan^(2)x + b cot^(2)x equals the maximum value of asin^(2) theta+b cos^(2) theta where a gt b gt 0. Then a/b is.

The minimum value of a tan^2x+bcot^2x equals the maximum value of a sin^2theta+bcos^2theta where agtbgt0, then a equals to

The minimum value of atan^2x+bcot^2x equals the maximum value of asin^2theta+bcos^2theta where a > b > 0. The a/b is 2 (b) 4 (c) 6 (d) 8

The minimum value of atan^2x+bcot^2x equals the maximum value of asin^2theta+bcos^2theta where a > b > 0. The a/b is 2 (b) 4 (c) 6 (d) 8

The minimum value of atan^2x+bcot^2x equals the maximum value of asin^2theta+bcos^2theta where a > b > 0. The a/b is 2 (b) 4 (c) 6 (d) 8

The minimum value of atan^2x+bcot^2x equals the maximum value of asin^2theta+bcos^2theta where a > b > 0. The a/b is 2 (b) 4 (c) 6 (d) 8

The minimum value of atan^2x+bcot^2x equals the maximum value of asin^2theta+bcos^2theta where a > b > 0. The a/b is 2 (b) 4 (c) 6 (d) 8

If a gt b , maximum value of a sin ^2x + b cos ^2 x is

If agt0,bgt0 and the minimum value of a sin^(2)theta+b cosec^(2)theta is equal to maximum value of a sin^(2)theta+b cos^(2)theta, then (a)/(b) is equal to