Home
Class 12
MATHS
underset( x rarr 1 )("lim")( root ( 3)(7...

`underset( x rarr 1 )("lim")( root ( 3)(7+x^(3))- sqrt( 3 +x^(2)))/( x-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate underset( x rarr oo )("lim") ( sqrt( 3x^(2) - 1) - sqrt( 2x ^(2) - 1))/( 4x + 3)

Evaluate lim_(xto1)(root(3)(7+x^3)-sqrt(3+x^2))/(x-1)

underset( x rarr (3pi)/( 4))("Lim")(1+ root( 3)(tan x))/( 1-2 cos^(2) x )

lim_(x rarr1)(3sqrt(7+x^(3))-sqrt(3+x^(2)))/(x-1) is equal to

underset(x rarr 1)lim (x^(3)-1)/(x^(2)-1) =

lim_(x rarr1)((7+x^(3))^((1)/(3))-sqrt(3+x^(2)))/(x-1)=

Evaluate : underset( x rarr0 ) ("lim") ( sqrt( ( 1+sin 3x))-1)/(ln ( 1+ tan 2x))

show : underset(xrarra)"lim"(root(3)(x)-root(3)(a))/(x-a)=(1)/(3)a^(-2/3)

lim_(x rarr1)(1-x^(3))/(2-sqrt(x^(2)+3))=?