Home
Class 12
MATHS
If x=t log t, y=t^(t), then (dy)/(dx)=...

If `x=t log t, y=t^(t)`, then `(dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

If x = log t^2 , y = log t^3 , then (dy)/(dx) is

If y=t^(2)-t+1," then: "(dy)/(dx)=

If x= t log t,y = (log t)/t , find (dy)/(dx) when t=1

If x=t^(3) and y=t^(4) then (dy)/(dx) at "t=-1" is

If " "x=t^(2),y=t^(3) ," then "(dy)/(dx)" at "t=-1" is "

If x=at,y=(a)/(t)," then "(dy)/(dx)=

x=e^(t)log t y=t log t then dy/dx

If x=(t+1)/(t),y=(t-1)/(t)," then "(dy)/(dx)=