Home
Class 11
MATHS
यदि a + ib = ( ( x + i) ^ 2 ) /...

यदि ` a + ib = ( ( x + i) ^ 2 ) / ( 2x ^ 2 + 1 ) ` तो साबित कीजिये कि ` a ^ 2 + b ^ 2 = (( x ^ 2 + 1 ) ^ 2 ) /( ( 2x^ 2 + 1 ) ^ 2 ) `

Promotional Banner

Similar Questions

Explore conceptually related problems

If a + ib = (1 + i) / (1 - i) , prove that a^2 + b^2 = 1

If a + ib = ((x+i)^2)/(2x^2+1) , prove that a^2+b^2 =((x^2+1)^2)/((2x^2+1)^2) .

x + iy = (a + ib) / (a-ib), provethat x ^ (2) + y ^ (2) = 1

If a + i b =((x+i)^2)/(2x^2+1), prove that a^2+b^2=((x^2+1)^2)/((2x^2+1)^2)

If a +ib = ((x+i)^(2))/(2x-1) then a^(2)+b^(2) is equal to

If a+i b=((x+i)^2)/(2x^2+1), prove that a^2+b^2=((x^2+1)^2)/((2x^2+1)^2)

If a+i b=((x+i)^2)/(2x^2+1), prove that a^2+b^2=((x^2+1)^2)/((2x^2+1)^2)

If a+i b=((x+i)^2)/(2x^2+1), prove that a^2+b^2=((x^2+1)^2)/((2x^2+1)^2)

If x +iy = (a + ib) / (a - ib) , prove that x^2 + y^2 = 1 .