Home
Class 11
MATHS
z1 8z z2,|1-z1( & z )2|^2-|z1-z2|^2=(1-...

`z_1 8z z_2,|1-z_1( & z )_2|^2-|z_1-z_2|^2=(1-|z_1|^2)(1-|z_2|^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |1-barz_1z_2|^2-|z_1-z_2|^2=(1-|z_1|^2)(1-|z_2|^2) .

If |z_1|le1,|z_2|le1"show that" |1-z_1z_2|^2-|z_1-z_2|^2=(1-|z_1|^2)(1-|z_2|^2 "Hence or otherwise show that." |(z_1-z_2)/(1-z_1z_2)|lt 1"if"|z_1| lt 1,|z_2| lt 1

If z_1, z_2 in C , then say which are true and false - . |z_1+z_2|^2=|z_1""|^2+|z_2|^2-2R e(z_1 z_2) |z_1-z_2|^2=|z_1""|^2-|z_2|^2-2R e(z_1 z_2) |z_1+z_2|^2+|z_1-z_2|^2=2(|z_1|^2+|z_2|^2) |a z_1-b z_2|^2+|b z_1+a z_2|^2=(a^2+b^2)(|z_1|^2+|z_2|^2) , where a ,b in Rdot

Prove that |z_1+z_2|^2+|z_1-z_2|^2 =2|z_1|^2+2|z_2|^2 .

For any two complex numbers z_1 and z_2 prove that: |\z_1+z_2|^2 +|\z_1-z_2|^2=2[|\z_1|^2+|\z_2|^2]

(v) |(z_1)/(z_2)|=|z_1| /|z_2|

If z_1 , and z_2 be two complex numbers prove that |z_1+z_2|^2+|z_1-z_2|^2=2[|z_1|^2+|z_2|^2]

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed